The Labour Supply of Women in STEM

Motivation

- the thesis "Essays on Occupational Choice" focuses on occupational segregation
- gender segregation is a key issue in achieving the equality of opportunities
 - different levels of earnings in different jobs/sectors
 - the main driving force for the gender pay gap in Germany and the EU
- occupations in science, engineering, technology, and mathematics STEM have always been highly segregated by gender
 - European policies aim at reducing gender segregation in the labour market
 - many regional and national campaigns aim at increasing women's share in STEM (e.g., "Girl's day – Future Prospects for Girls" in Germany)

Hypotheses

Women in STEM behave differently in terms of labour supply and their reaction to labour market policies differs from other women.

Possible explanations:

- 1. higher labour participation due to higher wage levels
- 2. higher labour participation because of high intrinsic motivation
- 3. less opportunities to work parttime and/or for re-entry after times out of the labour force

Identification strategy

- problems in the econometric analysis of occupational groups:
 - selection effects
 - unobserved heterogeneity
 - biased and inconsistent estimates can occur.
- Blundell et al. (1998) introduce a grouping estimator to overcome these problems
- core idea: definition of groups with homogenous developments of net wages and other net income

Data

- EU-SILC cross-sectional waves 2007, 2008, and 2009
- pooled dataset including
 - women born between 1960 and 1990
 - neither retired nor in education, military or social services
 - approximately 205.000 individuals included
- division of the data set into 72 groups per wave by 10-year birth cohort,
 educational level, geographical area, and working in STEM
- data on the national level of spending on childcare (% of GDP in CC) and on the national level of spending on family allowances and child benefits (% of GDP on FA) is merged from the online database of Eurostat

Estimation results: final estimation of labour supply

	Weekly working hours		Weekly working hours		Weekly working hours	
Variable	Coefficient	Std. Dev	Coefficient	t Std. Dev	Coefficient	Std. Dev
working in STEM	7.082***	0.965	8.040***	1.021	-12.44	25465.3
youngest child 0-3	-3.565***	0.240	-3.516***	0.246	-3.339***	0.285
youngest child 4-6	-3.349***	0.123	-3.327***	0.125	-3.146***	0.143
youngest child 7-10	-2.775***	0.090	-2.751***	0.092	-2.536***	0.105
STEM x yc 0-3	1.016***	0.243	1.005***	0.243	0.881***	0.271
STEM x yc 4-6	1.151***	0.239	1.142***	0.239	0.976***	0.268
STEM x yc 7-10	1.174***	0.214	1.174***	0.214	0.965***	0.239
high education	1.295***	0.046	1.334***	0.047	1.496***	0.056
% of GDP in FA			-2016.1***	289.4	-1785.2***	351.8
% of GDP in CC			405.4**	156.7	309.3+	180.2
STEM x % of GDP in FA			-38.53+	20.5	-46.89+	25.15
STEM x % of GDP in CC			-138.5***	33.54	-144.2***	39.49
N	161879		161879		113949	
Adj. R²	0.226		0.228		0.258	

Notes:

All three models include a complete set of group and time effects as well as country and birth cohort effects. It is also controlled for log wage, non-wife income, estimated residuals of three reduced forms.

Modell (3) only includes cohabiting women.

Source: EU-SILC 2007, 2008, 2009, own calculations. + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

Estimation results: final estimation of labour supply

	Weekly working hours		Weekly working hours		Weekly working hours	
Variable	Coefficien	t Std. Dev	Coefficient	Std. Dev	Coefficient	Std. Dev
working in STEM	7.082***	0.965	8.040***	1.021	-12.44	25465.3
youngest child 0-3	-3.565***	0.240	-3.516***	0.246	-3.339***	0.285
youngest child 4-6	-3.349***	0.123	-3.327***	0.125	-3.146***	0.143
youngest child 7-10	-2.775***	0.090	-2.751***	0.092	-2.536***	0.105
STEM x yc 0-3	1.016***	0.243	1.005***	0.243	0.881***	0.271
STEM x yc 4-6	1.151***	0.239	1.142***	0.239	0.976***	0.268
STEM x yc 7-10	1.174***	0.214	1.174***	0.214	0.965***	0.239
high education	1.295***	0.046	1.334***	0.047	1.496***	0.056
% of GDP in FA			-2016.1***	289.4	-1785.2***	351.8
% of GDP in CC			405.4**	156.7	309.3+	180.2
STEM x % of GDP in FA			-38.53+	20.5	-46.89+	25.15
STEM x % of GDP in CC			-138.5***	33.54	-144.2***	39.49
N	161879		161879		113949	
Adj. R²	0.226		0.228		0.258	

Source: EU-SILC 2007, 2008, 2009, own calculations. + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

Notes:

All three models include a complete set of group and time effects as well as country and birth cohort effects. It is also controlled for log wage, non-wife income, estimated residuals of three reduced forms.

Modell (3) only includes cohabiting women.

Estimation results: final estimation of labour supply

	Weekly working hours		Weekly working hours		Weekly working hours	
Variable	Coefficien	t Std. Dev	Coefficient	t Std. Dev	Coefficient	Std. Dev
working in STEM	7.082***	0.965	8.040***	1.021	-12.44	25465.3
youngest child 0-3	-3.565***	0.240	-3.516***	0.246	-3.339***	0.285
youngest child 4-6	-3.349***	0.123	-3.327***	0.125	-3.146***	0.143
youngest child 7-10	-2.775***	0.090	-2.751***	0.092	-2.536***	0.105
STEM x yc 0-3	1.016***	0.243	1.005***	0.243	0.881***	0.271
STEM x yc 4-6	1.151***	0.239	1.142***	0.239	0.976***	0.268
STEM x yc 7-10	1.174***	0.214	1.174***	0.214	0.965***	0.239
high education	1.295***	0.046	1.334***	0.047	1.496***	0.056
% of GDP in FA			-2016.1***	289.4	-1785.2***	351.8
% of GDP in CC			405.4**	156.7	309.3+	180.2
STEM x % of GDP in FA			-38.53+	20.5	-46.89+	25.15
STEM x % of GDP in CC			-138.5***	33.54	-144.2***	39.49
N	161879		161879		113949	
Adj. R²	0.226		0.228		0.258	

Source: EU-SILC 2007, 2008, 2009, own calculations. + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

Notes:

All three models include a complete set of group and time effects as well as country and birth cohort effects. It is also controlled for log wage, non-wife income, estimated residuals of three reduced forms.

Modell (3) only includes cohabiting women.

Estimation results: final estimation of labour supply

	Weekly working hours		Weekly working hours		Weekly working hours	
Variable	Coefficien	t Std. Dev	Coefficien	t Std. Dev	Coefficient	Std. Dev
working in STEM	7.082***	0.965	8.040***	1.021	-12.44	25465.3
youngest child 0-3	-3.565***	0.240	-3.516***	0.246	-3.339***	0.285
youngest child 4-6	-3.349***	0.123	-3.327***	0.125	-3.146***	0.143
youngest child 7-10	-2.775***	0.090	-2.751***	0.092	-2.536***	0.105
STEM x yc 0-3	1.016***	0.243	1.005***	0.243	0.881***	0.271
STEM x yc 4-6	1.151***	0.239	1.142***	0.239	0.976***	0.268
STEM x yc 7-10	1.174***	0.214	1.174***	0.214	0.965***	0.239
high education	1.295***	0.046	1.334***	0.047	1.496***	0.056
% of GDP in FA			-2016.1***	289.4	-1785.2***	351.8
% of GDP in CC			405.4**	156.7	309.3+	180.2
STEM x % of GDP in FA			-38.53+	20.5	-46.89+	25.15
STEM x % of GDP in CC			-138.5***	33.54	-144.2***	39.49
N	161879		161879		113949	
Adj. R²	0.226		0.228		0.258	

Source: EU-SILC 2007, 2008, 2009, own calculations. + p<0.1, * p<0.05, ** p<0.01, *** p<0.001.

Notes:

All three models include a complete set of group and time effects as well as country and birth cohort effects. It is also controlled for log wage, non-wife income, estimated residuals of three reduced forms.

Modell (3) only includes cohabiting women.

Conclusion

- empirical results indicate significant differences in the employment behaviour of women in STEM and of women in other occupations
- socio-demographic variables:
 - women, especially mothers, work more hours if working in STEM
 - but: women in STEM are more often out of the labour force
- influence of institutional settings:
 - higher spendings on childcare increase female labour supply
 - higher spendings on family allowances decrease female labour supply
 - additional effects for women in STEM are small in size
- further research needs to include firm-level data to control for working conditions, e.g., the provision of parttime jobs

Thank you for your attention!

Literature

- •Akerlof, G. A. and Kranton, R. E. (2000), Economics and Identity, Quarterly Journal of Economics 115(3), pp. 715–753.
- •Arrow, K.J. (1972), Models of Job Discrimination, in A. H. Pascal (ed.), Racial Discrimination in Economic Life, Lexington, MA: D.C. Heath, pp. 83–102.
- •Blau, F. D., Brummund, P., and Liu, A. Y. H. (2012), Trends in Occupational Segregation by Gender 1970-2009: Adjusting for the Impact of Changes in the Occupational Coding System, IZA Discussion Paper 6490, Institute for the Study of Labor (IZA).
- •Blundell, R., Duncan, A., and Meghir, C. (1998), Estimating Labor Supply Responses Using Tax Reforms, Econometrica 66(4), pp. 827–861.
- •Carrell, S. E., Page, M. E., and West, J. E. (2010), Sex and Science: How Professor Gender Perpetuates the Gender Gap, Quarterly Journal of Economics 125(3), pp. 1101–1144.
- •Hoem, J. M., Neyer, G., and Andersson, G. (2006), Education and Childlessness The Relationship between Educational Field, Educational Level, and Childlessness among Swedish Women born in 1955-59, Demographic Research 14(15), pp. 331–380.
- •Lappegard, T. and Ronsen, M. (2005), The Multifaceted Impact of Education on Entry into Motherhood, European Journal of Population Revue Europeanne De Demographie 21(1), pp. 45–75.
- •Leslie, L. L., McClure, G. T., and Oaxaca, R. L. (1998), Women and Minorities in Science and Engineering, a Life Sequence Analysis, The Journal of Higher Education 69(3), pp. 239–276.
- •Minks, K.-H. (1996), Frauen aus technischen und naturwissenschaftlichen Studiengängen Ein Vergleich der Berufsübergänge von Absolventinnen und Absolventen, vol. 116, Hannover: Hochschulplanung.
- •Minks, K.-H. (2001), Ingenieurinnen und Naturwissenschaftlerinnen neue Chancen zwischen Industrie- und Dienstleistungsgesellschaft: Ergebnisse einer Längsschnittuntersuchung zur beruflichen Integration von Frauen aus technischen und naturwissenschaftlichen Studiengängen, vol. 153, Hannover: Hochschulplanung.
- •Oppermann, A. (2012), A new Color in the Picture: The Impact of Educational Fields on Fertility in Western Germany, SOEP Papers 496, German Institute for Economic Research (DIW).
- •Phelps, E. S. (1972), The Statistical Theory of Racism and Sexism., American Economic Review 62, pp. 659-661.
- •Polachek, S. W. (1981), Occupational Self-Selection: A Human Capital Approach to Sex Differences in Occupational Structure, The Review of Economics and Statistics 63(1), pp. 60–69.
- •Schlenker, E. (2009), The Labour Supply of Female Engineers in Germany, Austrian Journal of Statistics 38(4), pp. 255–264.

Descriptive results

Variable	Mean	Std. Dev.	min	max	N
Women in STEM					
labour participation	0.747	0.435	0	1	22692
hours worked per week	38.351	6.890	1	84	16877
year of birth	1971.03	7.504	1960	1990	22692
youngest child 0-3	0.143	0.350	0	1	22692
youngest child 4-6	0.101	0.301	0	1	22692
youngest child 7-10	0.122	0.327	0	1	22692
Women in other occupation	S				
labour participation	0.801	0.399	0	1	181918
hours worked per week	35.66	9.499	1	99	145002
year of birth	1971.35	7.624	1960	1990	181918
youngest child 0-3	0.157	0.364	0	1	181918
youngest child 4-6	0.110	0.312	0	1	181918
youngest child 7-10	0.125	0.331	0	1	181918

Source: EU-SILC 2007, 2008, 2009; own calculations.